Professor Richard Lacey, microbiologist rubbished but later vindicated for warning that BSE could be transmitted to humans – obituary
21 FEBRUARY 2019 • 8:32PM
Professor Richard Lacey, who has died aged 78, was the dissident Leeds University medical microbiologist who in 1990 first alerted the British public to the link between the cattle disease Bovine Spongiform Encephalopathy (BSE or “Mad Cow Disease”) and its human equivalent, Creutzfeldt-Jakob Disease (CJD).
Warning of a future of hospital wards full of “thousands of people going slowly and painfully mad before dying”, he called in a Sunday Times interview for the slaughter of all BSE-infected herds (translated by the paper into the headline, “Leading Food Scientist Calls for Slaughter of 6 Million Cows”). The article provoked a carpet bombing of reassuring press releases from the Ministry of Agriculture...
10 | Lacey, Professor Richard | click here to download | |
10A | Lacey, Professor Richard | Proposed amendments to the transcript for Day 5, 17/03/1998. | click here to download |
10Ax | Lacey, Professor Richard | Annex to statement no. 10. Corrected transcript for Day 5, 17/03/1998. | click here to download |
10xi | Lacey, Professor Richard | Annex 1 to statement no. 10. CV and list of | click here to download |
10xii | Lacey, Professor Richard | Annex 2 to statement no. 10. Article by Dr | click here to download |
10xiii | Lacey, Professor Richard | Annex 3 to statment no. 10. Article by Dr Richard Lacey - | click here to download |
10xiv | Lacey, Professor Richard | Annex 4 to statement no. 10. Article by Dr | click here to download |
https://webarchive.nationalarchives.gov.uk/20080725213429/http://www.bseinquiry.gov.uk/files/ws/s010.pdf
https://webarchive.nationalarchives.gov.uk/20080725234253/http://www.bseinquiry.gov.uk/files/ws/s010a.pdf
https://webarchive.nationalarchives.gov.uk/20080725213429/http://www.bseinquiry.gov.uk/files/ws/s010ax.pdf
https://webarchive.nationalarchives.gov.uk/20080725213429/http://www.bseinquiry.gov.uk/files/ws/s010xi.pdf
https://webarchive.nationalarchives.gov.uk/20080725213429/http://www.bseinquiry.gov.uk/files/ws/s010xii.pdf
https://webarchive.nationalarchives.gov.uk/20080725213429/http://www.bseinquiry.gov.uk/files/ws/s010xiii.pdf
https://webarchive.nationalarchives.gov.uk/20080725213429/http://www.bseinquiry.gov.uk/files/ws/s010xiv.pdf
R.I.P. Professor Lacey, and Thanks!
Monday, May 05, 2014
Member Country details for listing OIE CWD 2013 against the criteria of Article 1.2.2., the Code Commission recommends consideration for listing
Friday, December 5, 2014
SPECIAL ALERT The OIE recommends strengthening animal disease surveillance worldwide
IN A NUT SHELL ; (Adopted by the International Committee of the OIE on 23 May 2006) 11. Information published by the OIE is derived from appropriate declarations made by the official Veterinary Services of Member Countries. The OIE is not responsible for inaccurate publication of country disease status based on inaccurate information or changes in epidemiological status or other significant events that were not promptly reported to the Central Bureau,
MONDAY, JANUARY 21, 2019
Bovine Spongiform Encephalopathy BSE TSE Prion Surveillance FDA USDA APHIS FSIS UPDATE 2019
Prion Conference 2018
O5 Prion Disease in Dromedary Camels
Babelhadj B (1), Di Bari MA (2), Pirisinu L (2), Chiappini B (2), Gaouar SB (3), Riccardi G (2), Marcon S (2), Agrimi U (2), Nonno R (2), Vaccari G (2) (1) École Normale Supérieure Ouargla. Laboratoire de protection des écosystèmes en zones arides et semi arides University Kasdi Merbah Ouargla, Ouargla, Algeria; (2) Istituto Superiore di Sanità, Department of Food Safety, Nutrition and Veterinary Public Health, Rome, Italy (3) University Abou Bekr Bélkaid, Tlemcen, Algeria.
Prions are responsible for fatal and transmissible neurodegenerative diseases including CreutzfeldtJakob disease in humans, scrapie in small ruminants and bovine spongiform encephalopathy (BSE). Following the BSE epidemic and the demonstration of its zoonotic potential, general concerns have been raised on animal prions.
Here we report the identification of a prion disease in dromedary camels (Camelus dromedarius) in Algeria and designate it as Camel Prion Disease (CPD). In the last years, neurological symptoms have been observed in adult male and female dromedaries presented for slaughter at the Ouargla abattoir. The symptoms include weight loss, behavioral abnormalities and neurological symptoms such as tremors, aggressiveness, hyper-reactivity, typical down and upwards movements of the head, hesitant and uncertain gait, ataxia of the hind limbs, occasional falls and difficult getting up. During 2015 and 2016, symptoms suggestive of prion disease were observed in 3.1% of 2259 dromedaries presented at ante-mortem examination. Laboratory diagnosis was obtained in three symptomatic dromedaries, sampled in 2016 and 2017, by the detection of typical neurodegeneration and disease-specific prion protein (PrPSc) in brain tissues.
Histopathological examination revealed spongiform change, gliosis and neuronal loss preferentially in grey matter of subcortical brain areas. Abundant PrPSc deposition was detected in the same brain areas by immunohistochemistry and PET-blot. Western blot analysis confirmed the presence of PK-resistant PrPSc, whose N-terminal cleaved PK-resistant core was characterized by a mono-glycosylated dominant form and by a distinctive N-terminal cleavage, different from that observed in BSE and scrapie.
PrPSc was also detected, by immunohistochemistry, in all sampled lymph nodes (cervical, prescapular and lumbar aortic) of the only animal from which they were collected.
The PRNP sequence of the two animals for which frozen material was available, showed 100% nucleotide identity with the PRNP sequence already reported for dromedary camel.
Overall, these data demonstrate the presence of a prion disease in dromedary camelswhose nature, origin and spread need further investigations. However, our preliminary observations on the rather high prevalence of symptomatic dromedaries and the involvement of lymphoid tissues, are consistent with CPD being an infectious disease. In conclusion, the emergence of a new prion disease in a livestock species of crucial importance for millions of people around the world, makes urgent to assess the risk for humans and to develop policies able to control the spread of the disease in animals and to minimize human exposure.
CDC
New Outbreak of TSE Prion in NEW LIVESTOCK SPECIES
Mad Camel Disease
Volume 24, Number 6—June 2018 Research
Prion Disease in Dromedary Camels, Algeria
Abstract
Prions cause fatal and transmissible neurodegenerative diseases, including Creutzfeldt-Jakob disease in humans, scrapie in small ruminants, and bovine spongiform encephalopathy (BSE). After the BSE epidemic, and the associated human infections, began in 1996 in the United Kingdom, general concerns have been raised about animal prions. We detected a prion disease in dromedary camels (Camelus dromedarius) in Algeria. Symptoms suggesting prion disease occurred in 3.1% of dromedaries brought for slaughter to the Ouargla abattoir in 2015–2016. We confirmed diagnosis by detecting pathognomonic neurodegeneration and disease-specific prion protein (PrPSc) in brain tissues from 3 symptomatic animals. Prion detection in lymphoid tissues is suggestive of the infectious nature of the disease. PrPSc biochemical characterization showed differences with BSE and scrapie. Our identification of this prion disease in a geographically widespread livestock species requires urgent enforcement of surveillance and assessment of the potential risks to human and animal health.
SNIP...
The possibility that dromedaries acquired the disease from eating prion-contaminated waste needs to be considered.
Tracing the origin of prion diseases is challenging. In the case of CPD, the traditional extensive and nomadic herding practices of dromedaries represent a formidable factor for accelerating the spread of the disease at long distances, making the path of its diffusion difficult to determine. Finally, the major import flows of live animals to Algeria from Niger, Mali, and Mauritania (27) should be investigated to trace the possible origin of CPD from other countries.
Camels are a vital animal species for millions of persons globally. The world camel population has a yearly growth rate of 2.1% (28). In 2014, the population was estimated at ≈28 million animals, but this number is probably underestimated.. Approximately 88% of camels are found in Africa, especially eastern Africa, and 12% are found in Asia. Official data reported 350,000 dromedaries in Algeria in 2014 (28).
On the basis of phenotypic traits and sociogeographic criteria, several dromedary populations have been suggested to exist in Algeria (29). However, recent genetic studies in Algeria and Egypt point to a weak differentiation of the dromedary population as a consequence of historical use as a cross-continental beast of burden along trans-Saharan caravan routes, coupled with traditional extensive/nomadic herding practices (30).
Such genetic homogeneity also might be reflected in PRNP. Studies on PRNP variability in camels are therefore warranted to explore the existence of genotypes resistant to CPD, which could represent an important tool for CPD management as it was for breeding programs for scrapie eradication in sheep.
In the past 10 years, the camel farming system has changed rapidly, with increasing setup of periurban dairy farms and dairy plants and diversification of camel products and market penetration (13). This evolution requires improved health standards for infectious diseases and, in light of CPD, for prion diseases.
The emergence of another prion disease in an animal species of crucial importance for millions of persons worldwide makes it necessary to assess the risk for humans and develop evidence-based policies to control and limit the spread of the disease in animals and minimize human exposure. The implementation of a surveillance system for prion diseases would be a first step to enable disease control and minimize human and animal exposure. Finally, the diagnostic capacity of prion diseases needs to be improved in all countries in Africa where dromedaries are part of the domestic livestock.
***> IMPORTS AND EXPORTS <***
***SEE MASSIVE AMOUNTS OF BANNED ANIMAL PROTEIN AKA MAD COW FEED IN COMMERCE USA DECADES AFTER POST BAN ***
USA MAD COW CASE 2018 FLORIDA
WEDNESDAY, SEPTEMBER 26, 2018
JAVMA In Short Update USDA announces detection of atypical BSE
ZOONOSIS OF SCRAPIE TSE PRION
O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France
Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases).
Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods.
*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period,
***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014),
***is the third potentially zoonotic PD (with BSE and L-type BSE),
***thus questioning the origin of human sporadic cases.
We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.
===============
***thus questioning the origin of human sporadic cases***
===============
***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.
==============
***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
PRION 2016 TOKYO
Saturday, April 23, 2016
SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016
Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online
Taylor & Francis
Prion 2016 Animal Prion Disease Workshop Abstracts
WS-01: Prion diseases in animals and zoonotic potential
Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,
Natalia Fernandez-Borges a. and Alba Marin-Moreno a
"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France
Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion... Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.
To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.
These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.
Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
***> why do we not want to do TSE transmission studies on chimpanzees $
5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man.
***> I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough.
***> Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.
snip...
R. BRADLEY
Title: Transmission of scrapie prions to primate after an extended silent incubation period)
*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS.
*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated.
*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains.
***> Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility. <***
Transmission of scrapie prions to primate after an extended silent incubation period
Emmanuel E. Comoy, Jacqueline Mikol, Sophie Luccantoni-Freire, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Valérie Durand, Capucine Dehen, Olivier Andreoletti, Cristina Casalone, Juergen A. Richt, Justin J. Greenlee, Thierry Baron, Sylvie L. Benestad, Paul Brown & Jean-Philippe Deslys Scientific Reports volume 5, Article number: 11573 (2015) | Download Citation
Abstract
Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie.
SNIP...
Discussion We describe the transmission of spongiform encephalopathy in a non-human primate inoculated 10 years earlier with a strain of sheep c-scrapie. Because of this extended incubation period in a facility in which other prion diseases are under study, we are obliged to consider two alternative possibilities that might explain its occurrence. We first considered the possibility of a sporadic origin (like CJD in humans). Such an event is extremely improbable because the inoculated animal was 14 years old when the clinical signs appeared, i.e. about 40% through the expected natural lifetime of this species, compared to a peak age incidence of 60–65 years in human sporadic CJD, or about 80% through their expected lifetimes. Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.
The second possibility is a laboratory cross-contamination. Three facts make this possibility equally unlikely. First, handling of specimens in our laboratory is performed with fastidious attention to the avoidance of any such cross-contamination. Second, no laboratory cross-contamination has ever been documented in other primate laboratories, including the NIH, even between infected and uninfected animals housed in the same or adjacent cages with daily intimate contact (P. Brown, personal communication). Third, the cerebral lesion profile is different from all the other prion diseases we have studied in this model19, with a correlation between cerebellar lesions (massive spongiform change of Purkinje cells, intense PrPres staining and reactive gliosis26) and ataxia. The iron deposits present in the globus pallidus are a non specific finding that have been reported previously in neurodegenerative diseases and aging27. Conversely, the thalamic lesion was reminiscent of a metabolic disease due to thiamine deficiency28 but blood thiamine levels were within normal limits (data not shown). The preferential distribution of spongiform change in cortex associated with a limited distribution in the brainstem is reminiscent of the lesion profile in MM2c and VV1 sCJD patients29, but interspecies comparison of lesion profiles should be interpreted with caution. It is of note that the same classical scrapie isolate induced TSE in C57Bl/6 mice with similar incubation periods and lesional profiles as a sample derived from a MM1 sCJD patient30.
We are therefore confident that the illness in this cynomolgus macaque represents a true transmission of a sheep c-scrapie isolate directly to an old-world monkey, which taxonomically resides in the primate subdivision (parvorder of catarrhini) that includes humans. With an homology of its PrP protein with humans of 96.4%31, cynomolgus macaque constitutes a highly relevant model for assessing zoonotic risk of prion diseases. Since our initial aim was to show the absence of transmission of scrapie to macaques in the worst-case scenario, we obtained materials from a flock of naturally-infected sheep, affecting animals with different genotypes32. This c-scrapie isolate exhibited complete transmission in ARQ/ARQ sheep (332 ± 56 days) and Tg338 transgenic mice expressing ovine VRQ/VRQ prion protein (220 ± 5 days) (O. Andreoletti, personal communication). From the standpoint of zoonotic risk, it is important to note that sheep with c-scrapie (including the isolate used in our study) have demonstrable infectivity throughout their lymphoreticular system early in the incubation period of the disease (3 months-old for all the lymphoid organs, and as early as 2 months-old in gut-associated lymph nodes)33. In addition, scrapie infectivity has been identified in blood34, milk35 and skeletal muscle36 from asymptomatic but scrapie infected small ruminants which implies a potential dietary exposure for consumers.
Two earlier studies have reported the occurrence of clinical TSE in cynomolgus macaques after exposures to scrapie isolates. In the first study, the “Compton” scrapie isolate (derived from an English sheep) and serially propagated for 9 passages in goats did not transmit TSE in cynomolgus macaque, rhesus macaque or chimpanzee within 7 years following intracerebral challenge1; conversely, after 8 supplementary passages in conventional mice, this “Compton” isolate induced TSE in a cynomolgus macaque 5 years after intracerebral challenge, but rhesus macaques and chimpanzee remained asymptomatic 8.5 years post-exposure8. However, multiple successive passages that are classically used to select laboratory-adapted prion strains can significantly modify the initial properties of a scrapie isolate, thus questioning the relevance of zoonotic potential for the initial sheep-derived isolate. The same isolate had also induced disease into squirrel monkeys (new-world monkey)9. A second historical observation reported that a cynomolgus macaque developed TSE 6 years post-inoculation with brain homogenate from a scrapie-infected Suffolk ewe (derived from USA), whereas a rhesus macaque and a chimpanzee exposed to the same inoculum remained healthy 9 years post-exposure1. This inoculum also induced TSE in squirrel monkeys after 4 passages in mice. Other scrapie transmission attempts in macaque failed but had more shorter periods of observation in comparison to the current study. Further, it is possible that there are differences in the zoonotic potential of different scrapie strains.
The most striking observation in our study is the extended incubation period of scrapie in the macaque model, which has several implications. Firstly, our observations constitute experimental evidence in favor of the zoonotic potential of c-scrapie, at least for this isolate that has been extensively studied32,33,34,35,36. The cross-species zoonotic ability of this isolate should be confirmed by performing duplicate intracerebral exposures and assessing the transmissibility by the oral route (a successful transmission of prion strains through the intracerebral route may not necessarily indicate the potential for oral transmission37). However, such confirmatory experiments may require more than one decade, which is hardly compatible with current general management and support of scientific projects; thus this study should be rather considered as a case report.
Secondly, transmission of c-BSE to primates occurred within 8 years post exposure for the lowest doses able to transmit the disease (the survival period after inoculation is inversely proportional to the initial amount of infectious inoculum). The occurrence of scrapie 10 years after exposure to a high dose (25 mg) of scrapie-infected sheep brain suggests that the macaque has a higher species barrier for sheep c-scrapie than c-BSE, although it is notable that previous studies based on in vitro conversion of PrP suggested that BSE and scrapie prions would have a similar conversion potential for human PrP38.
Thirdly, prion diseases typically have longer incubation periods after oral exposure than after intracerebral inoculations: since humans can develop Kuru 47 years after oral exposure39, an incubation time of several decades after oral exposure to scrapie would therefore be expected, leading the disease to occur in older adults, i.e. the peak age for cases considered to be sporadic disease, and making a distinction between scrapie-associated and truly sporadic disease extremely difficult to appreciate.
Fourthly, epidemiologic evidence is necessary to confirm the zoonotic potential of an animal disease suggested by experimental studies. A relatively short incubation period and a peculiar epidemiological situation (e.g., all the first vCJD cases occurring in the country with the most important ongoing c-BSE epizootic) led to a high degree of suspicion that c-BSE was the cause of vCJD. Sporadic CJD are considered spontaneous diseases with an almost stable and constant worldwide prevalence (0.5–2 cases per million inhabitants per year), and previous epidemiological studies were unable to draw a link between sCJD and classical scrapie6,7,40,41, even though external causes were hypothesized to explain the occurrence of some sCJD clusters42,43,44. However, extended incubation periods exceeding several decades would impair the predictive values of epidemiological surveillance for prion diseases, already weakened by a limited prevalence of prion diseases and the multiplicity of isolates gathered under the phenotypes of “scrapie” and “sporadic CJD”.
Fifthly, considering this 10 year-long incubation period, together with both laboratory and epidemiological evidence of decade or longer intervals between infection and clinical onset of disease, no premature conclusions should be drawn from negative transmission studies in cynomolgus macaques with less than a decade of observation, as in the aforementioned historical transmission studies of scrapie to primates1,8,9. Our observations and those of others45,46 to date are unable to provide definitive evidence regarding the zoonotic potential of CWD, atypical/Nor98 scrapie or H-type BSE. The extended incubation period of the scrapie-affected macaque in the current study also underscores the limitations of rodent models expressing human PrP for assessing the zoonotic potential of some prion diseases since their lifespan remains limited to approximately two years21,47,48. This point is illustrated by the fact that the recently reported transmission of scrapie to humanized mice was not associated with clinical signs for up to 750 days and occurred in an extreme minority of mice with only a marginal increase in attack rate upon second passage13. The low attack rate in these studies is certainly linked to the limited lifespan of mice compared to the very long periods of observation necessary to demonstrate the development of scrapie. Alternatively, one could estimate that a successful second passage is the result of strain adaptation to the species barrier, thus poorly relevant of the real zoonotic potential of the original scrapie isolate of sheep origin49. The development of scrapie in this primate after an incubation period compatible with its lifespan complements the study conducted in transgenic (humanized) mice; taken together these studies suggest that some isolates of sheep scrapie can promote misfolding of the human prion protein and that scrapie can develop within the lifespan of some primate species.
In addition to previous studies on scrapie transmission to primate1,8,9 and the recently published study on transgenic humanized mice13, our results constitute new evidence for recommending that the potential risk of scrapie for human health should not be dismissed. Indeed, human PrP transgenic mice and primates are the most relevant models for investigating the human transmission barrier. To what extent such models are informative for measuring the zoonotic potential of an animal TSE under field exposure conditions is unknown. During the past decades, many protective measures have been successfully implemented to protect cattle from the spread of c-BSE, and some of these measures have been extended to sheep and goats to protect from scrapie according to the principle of precaution. Since cases of c-BSE have greatly reduced in number, those protective measures are currently being challenged and relaxed in the absence of other known zoonotic animal prion disease. We recommend that risk managers should be aware of the long term potential risk to human health of at least certain scrapie isolates, notably for lymphotropic strains like the classical scrapie strain used in the current study. Relatively high amounts of infectivity in peripheral lymphoid organs in animals infected with these strains could lead to contamination of food products produced for human consumption. Efforts should also be maintained to further assess the zoonotic potential of other animal prion strains in long-term studies, notably lymphotropic strains with high prevalence like CWD, which is spreading across North America, and atypical/Nor98 scrapie (Nor98)50 that was first detected in the past two decades and now represents approximately half of all reported cases of prion diseases in small ruminants worldwide, including territories previously considered as scrapie free... Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.
Saturday, December 15, 2018
***> ADRD Summit RFI Singeltary COMMENT SUBMISSION BSE, SCRAPIE, CWD, AND HUMAN TSE PRION DISEASE December 14, 2018
SATURDAY, JANUARY 5, 2019
Low levels of classical BSE infectivity in rendered fat tissue
***> FRIDAY, DECEMBER 14, 2018 MAD COW USA FLASHBACK Texas Style
FRIDAY DECEMBER 14, 2018
THURSDAY, JANUARY 3, 2019
MAD COW USDA DISEASE BSE TSE Prion
THURSDAY, OCTOBER 22, 2015
Former Ag Secretary Ann Veneman talks women in agriculture and we talk mad cow disease USDA and what really happened
HOW TO COVER UP MAD COW DISEASE IN TEXAS
WEDNESDAY, AUGUST 29, 2018
OIE Bovine spongiform encephalopathy, United States of America Information received on 29/08/2018 from Dr John Clifford, Official Delegate, Chief Trade Advisor, APHIS USDA
''The event is resolved. No more reports will be submitted.''
well, so much for those herd mates exposed to this atypical BSE cow, and all those trace in and trace outs.
The OIE, USDA, and the BSE MRR policy is a joke, a sad, very sad joke...
Saturday, July 23, 2016
BOVINE SPONGIFORM ENCEPHALOPATHY BSE TSE PRION SURVEILLANCE, TESTING, AND SRM REMOVAL UNITED STATE OF AMERICA UPDATE JULY 2016
Tuesday, July 26, 2016
Atypical Bovine Spongiform Encephalopathy BSE TSE Prion UPDATE JULY 2016
Monday, June 20, 2016
Specified Risk Materials SRMs BSE TSE Prion Program
Wednesday, January 23, 2019
CFIA SFCR Guidance on Specified risk material (SRM) came into force on January 15, 2019
MONDAY, JANUARY 21, 2019
Bovine Spongiform Encephalopathy BSE TSE Prion Surveillance FDA USDA APHIS FSIS UPDATE 2019
FRIDAY, FEBRUARY 01, 2019
Poland Exported 5,500 Pounds of Meat From Sick Cows to EU, what about mad cow disease?
Poland is Proof atypical BSE is NOT an old cow spontaneous disease...tss
MONDAY, FEBRUARY 04, 2019
POLAND DETECTS BOVINE SPONGIFORM ENCEPHALOPATHY BSE TSE PRION
Poland is Proof atypical BSE is NOT an old cow spontaneous disease...tss
THURSDAY, OCTOBER 04, 2018
Cervid to human prion transmission 5R01NS088604-04 Update
THURSDAY, FEBRUARY 21, 2019 CWD TSE PRION UPDATE, ARK, TENN, MS, PA, TX, KS, AND CONGRESS 2002
with sad regards, terry
No comments:
Post a Comment